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Area–volume properties of fluid interfaces are investigated to quantify the scale-local
and cumulative structure. An area–volume density g3(λ) and ratio Ω3(λ) are introduced
to examine the interfacial behaviour as a function of scale λ or across a range
of scales, respectively. These measures are demonstrated on mixed-fluid interfaces
from whole-field ∼ 10003 three-dimensional space–time concentration measurements
in turbulent jets above the mixing transition, at Re ∼ 20 000 and Sc ∼ 2000, recorded
by laser-induced-fluorescence and digital-imaging techniques, with Taylor’s hypothesis
applied. The cumulative structure is scale dependent in Ω3(λ), with a dimension D3(λ)
that increases with increasing scale. In contrast, the scale-local structure exhibits
self-similarity in g3(λ) with an exponent αg ≈ 1.3 for these interfaces. The scale
dependence in the cumulative structure arises from the large scales, while the self-
similarity corresponds to the small-scale area–volume contributions. The small scales
exhibit the largest area–volume density and provide the dominant contributions to the
total area–volume ratio, which corresponds to ∼ 10 times the area of a purely large-
scale interface for the present flow conditions. The self-similarity in the scale-local
structure at small scales provides the key ingredient to extrapolate the area–volume
behaviour to higher Reynolds numbers.

1. Introduction
Fluid interfaces generated by turbulent flows are known to exhibit complex dynam-

ics and structure over a wide range of scales (e.g. Sreenivasan 1991; Vassilicos & Hunt
1991; Yoda, Hesselink & Mungal 1994; Dalziel, Linden & Youngs 1999; Villermaux
& Innocenti 1999; Catrakis & Bond 2000). The behaviour of the interfaces and their
relation to the flow dynamics provide a physical point of view useful in studies of
turbulence. One of the principal challenges in turbulence is to bridge the gap between
the knowledge of the flow dynamics that is beginning to be acquired at moderate
Reynolds numbers and what needs to be known at large values of the Reynolds
number. Such questions have usually been addressed in terms of correlation tensors,
structure functions, and spectra (e.g. Frisch 1995; Sreenivasan & Antonia 1997; and
references therein). Physically, and from the point of view of practical applications,
a crucial feature is the structure of the turbulent fluid interfaces. How convoluted
are they in turbulent flows? What are the relative contributions of the large-scale
and small-scale flow dynamics to the interfacial structure? How does one extrapolate
knowledge of the interfacial behaviour to higher Reynolds numbers?
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Turbulent fluid interfaces are of interest both fundamentally and practically (e.g.
Pope 1988; Roshko 1991; Sreenivasan 1991; Dimotakis 2000). The term fluid inter-
faces covers any isosurfaces or regions in the flow associated with a given fluid or flow
property, such as concentration, density, velocity or vorticity interfaces. For example,
mixed-fluid interfaces correspond to isoconcentration surfaces in turbulent mixing.
Knowledge of the behaviour of mixed-fluid interfaces is needed for physically based
descriptions and predictions of mixing in turbulence. Useful interfacial properties in-
clude geometrical statistics such as the area–volume ratio, fractal or scale-dependent
coverage dimensions, and distributions of interfacial scales (e.g. Mandelbrot 1975;
Takayasu 1982; Pope 1988; Sreenivasan, Ramshankar & Meneveau 1989; Sreeni-
vasan 1991; Vassilicos & Hunt 1991; Catrakis & Dimotakis 1996, 1998; Villermaux &
Innocenti 1999; Catrakis 2000). Such properties quantify the interfacial behaviour and
are important in various applications such as aero-optics (e.g. Dimotakis, Catrakis
& Fourguette 2001; Jumper & Fitzgerald 2001), mixing (e.g. Villermaux & Innocenti
1999), and flow control (e.g. Gad el Hak 2000).

The large-scale as well as small-scale interfacial properties are significant in practice.
The interfacial large-scale structure is important for transport and entrainment (e.g.
Brown & Roshko 1974), while the small-scale behaviour can influence the total
interfacial area (e.g. Catrakis & Dimotakis 1998). The behaviour across the entire
range of interfacial scales determines the mixing efficiency, or fraction of mixed
fluid, in the flow. A basic issue concerning small-scale interfacial behaviour is the
extent to which the interfaces exhibit scale independence, i.e. self-similarity, or scale
dependence. The original proposals of interfacial self-similarity can be traced to
Richardson (1922), Welander (1955), and Mandelbrot (1975). This continues to be
an active subject of study with a number of reports indicating self-similar behaviour
(e.g. Sreenivasan & Meneveau 1986; Vassilicos & Hunt 1991; Frederiksen, Dahm &
Dowling 1996, 1997; Dalziel et al. 1999) while other studies suggest scale-dependent
behaviour (e.g. Takayasu 1982; Miller & Dimotakis 1991; Catrakis & Dimotakis
1996). Scale independence of the interfaces would enable the use of power-law
descriptions in terms of constant fractal dimensions (e.g. Sreenivasan 1991), while
scale-dependent behaviour would require knowledge of the distribution of interfacial
scales (e.g. Catrakis 2000). These approaches would permit extrapolation of the
interfacial properties to higher Reynolds numbers.

In the present work, area–volume properties of fluid interfaces are considered with
emphasis on the scale-local as well as cumulative structure in order to investigate self-
similarity and the relative contributions of the large-scale and small-scale interfacial
features to the area–volume behaviour. In § 2, scale-local and cumulative measures are
introduced to identify interfacial area–volume contributions as a function of scale or
across a range of scales, respectively. In § 3, these area–volume measures are demon-
strated on mixed-fluid interfaces derived from whole-field ∼ 10003 three-dimensional
space–time concentration measurements in turbulent jets above the mixing transition
at Re ∼ 20 000 and Sc ∼ 2000, with Taylor’s hypothesis applied. Results are pre-
sented on both the scale-local and cumulative interfacial structure and area–volume
properties. Some general implications are discussed in the conclusions.

2. Proposed area–volume measures of fluid interfaces
Quantitative examinations of self-similarity of fluid interfaces in turbulent flows

have relied mostly on box-counting statistics (e.g. Sreenivasan 1991; Vassilicos & Hunt
1991; Dalziel et al. 1999; Villermaux & Innocenti 1999; Catrakis & Bond 2000), in
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particular the dimension Dd(λ) derived from the coverage Nd(λ), where d denotes the
Euclidean dimension of the interfaces, e.g. d = 3. A large-scale bounding box of size
δb, containing the interface, is partitioned into λ-scale boxes and N3(λ) is the number
of λ-scale boxes necessary to cover the interface, with N3(δb) = 1. Normalized by
the total number of partition boxes at scale λ, N3(λ) yields the interfacial coverage
fraction F3(λ) ≡ N3(λ) (λ/δb)3. It is the probability that a λ-box contains part of the
interface. The coverage dimension D3(λ) is a logarithmic scale derivative of N3(λ), i.e.

D3(λ) ≡ −d logN3(λ)

d log λ
≡ 3− d logF3(λ)

d log λ
(2.1)

(e.g. Takayasu 1982). This quantity is often employed to examine self-similarity and
is regarded as the effective dimensionality of the interface as a function of scale. It
may be called a generalized fractal dimension in the sense that it need not be scale
independent. For mixed-fluid interfaces, it satisfies the bounds 2 6 D3(λ) 6 3, where 2
is the topological dimension of the interfaces in three dimensions. If a range of scales
is found where D3(λ) is a constant, i.e. if N3(λ) ∼ λ−D3 , then D3 can be identified as
the fractal dimension associated with self-similar structure of the interfaces at those
scales. In the general case, the behaviour of D3(λ) may be related to a distribution of
interfacial scales in the sense of level-crossing spacings (e.g. Catrakis 2000).

To quantify the interfacial area–volume behaviour, we propose a dimensionless
area–volume ratio Ω3(λ) defined as a function of scale λ, in terms of a box-counting
measure of the interfacial area, A3(λ) ≡ λ2N3(λ), normalized by the bounding-box
volume, Vb ≡ δ3

b:

Ω3(λ) ≡ A(λ)

V
2/3
b

=

(
λ

δb

)2

N3(λ), with αΩ(λ) ≡ −d logΩ3(λ)

d log λ
= D3(λ)− 2, (2.2)

where 0 6 αΩ(λ) 6 1 is the logarithmic derivative associated with the area–volume
ratio Ω3(λ). This is a generalization of the total shape complexity, or total area–volume
ratio, employed by Catrakis & Dimotakis (1998). The bounds of the proposed area–
volume ratio will be 1 = Ω3(δb) 6 Ω3(λ) 6 Ω3(0) ≡ Ω3, tot where Ω3, tot denotes the
total value corresponding to the interfacial area across the entire range of scales.
The area–volume ratio Ω3(λ) increases with decreasing scale because Ω3(λ), as well as
N3(λ), measure the cumulative interfacial structure. The value of Ω3(λ) at a given scale
is influenced by all interfacial features above that scale, because N3(λ) is sensitive to
the interfacial features above the scale λ. Both N3(λ) and Ω3(λ), therefore, contain
interfacial information from scales larger than or equal to λ, in particular including
the large scales of the flow.

Is there a way to quantify the scale-local, as opposed to cumulative, area–volume
behaviour? To answer this, we introduce an area–volume density g3(λ) as the scale-
local contribution from interfacial features in the differential scale range {λ, λ + dλ}
to the area–volume ratio. This scale-local quantity is obtained from the cumulative
area–volume ratios at scales λ and λ+ dλ as Ω3(λ) ≡ Ω3(λ+ dλ) + g3(λ)dλ, i.e.

g3(λ) ≡ −dΩ3(λ)

dλ
, with αg(λ) ≡ −d log g3(λ)

d log λ
, (2.3)

where αg(λ) is a logarithmic derivative of g3(λ), cf. (2.2). If αg(λ) = const., then αg can
be interpreted as the area–volume density exponent with g3(λ) ∼ λ−αg . More generally,

g3(λ) = exp{∫ δb

λ
αg(λ

′)dλ′/λ′}/δb, valid even if αg is scale dependent. Whereas Ω3(λ)
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characterizes the cumulative area–volume contributions, g3(λ) provides the means to
quantify the scale-local interfacial contributions to the area–volume ratio.

At the large scales, the area–volume ratio behaves as Ω3(λ→ δb) ∼ (λ/δb)−1 → 1,
since N3(λ → δb) ∼ (λ/δb)−3 → 1, while at the smallest scales Ω3(λ → 0) → Ω3, tot =
const. The corresponding interfacial area–volume density contributions are g3(λ →
δb) = 1/δb and g3(λ → 0) = 0, resulting in −∞ 6 αg(λ) 6 2. The αg limits are
different from the αΩ bounds, cf. (2.2); in particular αg can be negative. At scales
where αg > 1, αg(λ) can be interpreted as a scale-local dimension. Specifically, if the
interfacial coverage is N3(λ) ∼ λ−D3 , with D3 = const., then D3 = αg + 1. In general,
however, the interfacial coverage dimension D3(λ) will not necessarily be equivalent
to the area–volume density exponent αg(λ), i.e. D3(λ) 6= αg(λ)+1. This is because Ω3(λ)
and N3(λ) are cumulative quantities coupling interfacial information across different
scales, whereas g3(λ) and αg(λ) are scale-local measures. In fact, inverting (2.3) and
using (2.2),

Ω3(λ) = 1 +

∫ δb

λ

g3(λ
′)dλ′, and D3(λ) = 2 +

λg3(λ)

1 +
∫ δb

λ
g3(λ′)dλ′

, (2.4)

showing explicitly that Ω3(λ) as well as the dimension D3(λ) are scale cumulative. In
particular, these cumulative quantities are affected by contributions from the large
scales. In contrast, g3(λ) can be used to separate the small-scale properties from
the large-scale behaviour. The area–volume density g3(λ) and exponent αg(λ) enable
the scale-local examination of the interfacial area–volume contributions and can be
expected to be particularly useful for determining the presence of self-similarity.

3. Application to measurements of mixed-fluid interfaces
The proposed area–volume quantities can be applied to various fluid interfaces in

turbulence. We demonstrate them here on mixed-fluid interfaces derived from whole-
field high-resolution three-dimensional space–time concentration measurements in
turbulent jets above the mixing transition. The flow facility, experiments, and imaging
technique are described in detail in Catrakis et al. (2002), and are briefly summarized
here for completeness. The facility consists of a 6 ft diameter, 9 ft high octagonal tank
with extensive optical access and was operated in a blow-down manner to generate
a turbulent water jet with exit velocity U0 = 8 m s−1 from a contoured nozzle of exit
diameter d = 2.54 mm, resulting in a Reynolds number Re ∼ 20 000 which is above
the mixing transition (e.g. Roshko 1991; Dimotakis 2000). The imaging technique
relied on laser-induced fluorescence of disodium fluorescein with a Schmidt number
Sc ∼ 2000 (e.g. Sreenivasan & Meneveau 1986; Catrakis & Dimotakis 1996). Three-
dimensional space–time x, y, t imaging was conducted in the far field (z/d ∼ 500) by
illuminating the x, y similarity plane of the jet, i.e. normal to the jet axis, with a laser
sheet and recording the concentration field in this plane continuously in time with a
1008× 1018-pixel, 10-bit CCD sensor (Kodak KAI-1010M) operating at 30 frames/s
for a total of 972 images per run. Each ∼ 10003 whole-field data set was calibrated,
normalized, and processed to extract outer mixed-fluid interfaces as isoconcentration
surfaces marking the boundary between mixed fluid and pure ambient fluid. In order
to apply Taylor’s hypothesis in time, the imaging rate was chosen to match the mean
velocity of the outer interfaces.

Figure 1 shows an example of a two-dimensional spatial x, y concentration field
extracted from the whole-field ∼ 10003 three-dimensional space–time measurements.



Area–volume properties of fluid interfaces in turbulence 249

Figure 1. A two-dimensional spatial x, y concentration-field image extracted from whole-field
∼ 10003 three-dimensional space–time x, y, t measurements in the similarity plane of a turbulent jet
at Re ∼ 20 000 and Sc ∼ 2000, at a far-field downstream distance of z/d ∼ 500 where d is the jet
nozzle diameter. The transverse extent of the jet in the image is ∼ 0.5 m. The colours from blue
to yellow denote increasing levels of jet-fluid concentration, and were applied to aid the eye in
visualizing the concentration field as well as the mixed-fluid interfaces. White denotes pure ambient
fluid. The outer interface, between mixed fluid and pure fluid, is visible as the convoluted boundary
between blue and white.

The outer interface is visible as the convoluted boundary between mixed fluid and
pure ambient fluid, i.e. the interface between blue and white in figure 1. Such two-
dimensional interfaces have been studied before, e.g. Sreenivasan & Meneveau (1986)
and Catrakis & Dimotakis (1996). An example of the evolution in time of the
outer interface is shown in figure 2 which depicts the whole-field dynamics of the
interface, with time normal to the page, and corresponds to the passage of about
three large-scale structures through the interior of the outer interface. Large-scale as
well as small-scale area–volume features of the outer interfaces are evident in figure 3
which is a whole-field opaque rendering of a three-dimensional space–time x, y, t outer
interface. The present data enable an examination of the large-scale and small-scale
contributions to the area–volume behaviour.

The area–volume measures of § 2 were applied to the outer mixed-fluid interfaces.
Box-counting was performed in three dimensions, using Taylor’s hypothesis in time,
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Figure 2. A transparent visualization showing the evolution in time of the outer interface at
Re ∼ 20 000 and Sc ∼ 2000, extracted from a data set of ∼ 10003 three-dimensional space–time
x, y, t concentration measurements. The visualization spans the entire jet diameter and the dynamics
correspond to the passage of about three large-scale structures through the higher-speed interior of
the outer interface. The view shown is along the time axis and the blue colour corresponds to the
outer-interface fluid, cf. figure 1.

to evaluate all the quantities discussed in § 2, i.e. the coverage N3(λ), the coverage
fraction F3(λ), the cumulative area–volume ratio Ω3(λ) with exponent αΩ(λ), and the
scale-local area–volume density g3(λ) with exponent αg(λ). Anisotropic box-counting
measures (e.g. Catrakis 2000) were not examined since the focus of this study was on
scale-independence/-dependence. In general, there will be a distribution of directions
at each scale and the results below correspond to properties averaged over the
direction distribution. Ensemble-averaged results for the box counts and area–volume
measures are presented in figure 4. Interfacial scales are normalized by the ensemble-
averaged bounding-box scale δb. From the coverage N3(λ) and coverage fraction
F3(λ), in figures 4(a) and 4(b), the area–volume measures were derived. The area–
volume ratio Ω3(λ) in figure 4(c) exhibits scale dependence, as is also evident in
figure 4(d ) which shows that αΩ(λ) increases continuously with increasing scale and,
therefore, D3(λ) ≡ αΩ(λ) + 2 is also scale dependent; the uncertainty in αΩ(λ) is
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Figure 3. Large-scale as well as small-scale area–volume features of the outer interface are evident
in this visualization. The image shown is a whole-field opaque rendering derived from the ∼ 10003

space–time x, y, t concentration measurements and the view of the outer interface shown is normal
to the time axis, cf. figure 2. Early times are at the bottom. The corresponding streamwise direction
is from top to bottom.

estimated at ±0.02. The cumulative behaviour is, therefore, scale dependent. In
contrast, the scale-local area–volume density g3(λ), shown in figure 4(e), exhibits
power-law scaling as indicated by the near-constant value αg(λ) ≈ 1.3 in figure 4(f);
note that αg(λ) < 1 at the smallest scales as expected from the analysis in §2. The
scale-local area–volume contributions, therefore, exhibit self-similarity. If D3(λ) were
constant, then αg ≈ 1.3 would correspond to D3 = αg + 1 ≈ 2.3. This dimension
value is in very close agreement with previous results (e.g. Sreenivasan & Mene-
veau 1986; Prasad & Sreenivasan 1990). For a scale-dependent D3(λ), as is the
case here, D3(λ) is not equivalent to αg(λ). As discussed in § 2, D3(λ) 6= αg(λ) + 1
in general because D3(λ) couples interfacial features across different scales. Yet,
the results in figures 4(d ) and 4(f) demonstrate that scale-local self-similarity is
consistent with cumulative scale dependence in the area–volume behaviour. The
often-employed coverage dimension D3(λ) is in this case not sufficient to detect
the self-similarity in the interfacial structure. The area–volume density g3(λ) and
exponent αg(λ) enable a separation of the small-scale structure from the large-scale
behaviour and suggest that the cumulative scale dependence arises from the large



252 H. J. Catrakis, R. C. Aguirre and J. Ruiz-Plancarte

8

6

4

2

0
–3 –2 –1 0

lo
g 1

0 
N

3(
k)

(a)

–3 –2 –1 0

(b)

0

lo
g 1

0 
F

3(
k)

–0.5

–1.0

–1.5

–3 –2 –1 0

(c)

–3 –2 –1 0

(d)

–3 –2 –1 0

(e)

–3 –2 –1 0

( f )

0

lo
g 1

0 
X

3(
k)

0.5

1.0

1.5 1.0

0.8

0.6

0.4

0.2

0

α
X

(k
)≡

D
3(

k)
–

2

–3

–2

–1

0

lo
g 1

0
 g

3
(k

)

2

1

0

–1

α
g
(k

)

log10(k /db) log10(k /db)

Figure 4. Ensemble-averaged statistics of mixed-fluid interfaces: (a) coverage N3(λ); (b) coverage
fraction F3(λ); (c) cumulative area–volume ratio Ω3(λ); (d ) area–volume exponent αΩ(λ) ≡ D3(λ)−2,
where D3(λ) is the coverage dimension; (e) scale-local area–volume density g3(λ); (f) scale-local
area–volume density exponent αg(λ), with the dashed line at αg = 1.3.

scales while the self-similarity corresponds to the small scales, cf. (2.4) and figures 4(d )
and 4(f).

The largest area–volume density is associated with the small scales which provide
the dominant contributions to the total area–volume ratio, cf. figure 4(e). For the
present interfaces, this is log10 Ω3, tot ≈ 1.47 or Ω3, tot ≈ 30, cf. figure 4(c). This corre-
sponds to (Ω3, tot δ

2
b)/(πδ2

b) ∼ 10 times the area of a purely large-scale interface, cf.
(2.2), consistent with two-dimensional measurements (e.g. Paizis & Schwarz 1974;
Catrakis & Dimotakis 1996). This order-of-magnitude increase in interfacial area
arises primarily from the small scales. The total area–volume ratio can be expected
to be Reynolds-number and Schmidt-number dependent, as well as flow-geometry
dependent, in general.
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4. Conclusions
Scale-local and cumulative area–volume measures of fluid interfaces enable an

examination of the interfacial structure as a function of scale or across a range of
scales, respectively. Demonstration of these measures on mixed-fluid interfaces derived
from concentration-field measurements has resulted in findings with immediate impact
on the study of interfacial self-similarity in turbulence. While the cumulative area–
volume behaviour is scale dependent, as evidenced in the area–volume ratio Ω3(λ)
and the dimension D3(λ), the scale-local structure exhibits self-similarity in terms of
the area–volume density g3(λ). The latter separates the small-scale properties from
the large-scale behaviour. The scale dependence in the cumulative structure arises
from the large scales, while the self-similar structure corresponds to the small-scale
area–volume contributions.

The present findings on interfacial area–volume properties demonstrate an example
of turbulent-flow conditions, above the mixing transition, for which scale dependence
in the cumulative structure is consistent with self-similarity in the scale-local structure.
This suggests, for example, that in turbulent flows where large-scale effects are present,
observations of scale dependence based on D3(λ) alone will need to be examined also
in terms of the scale-local area–volume density g3(λ). The present findings show that
scale dependence in the cumulative interfacial structure can be consistent with the
original ideas of Richardson (1922), when the scale-local interfacial structure exhibits
self-similarity. Because the small scales are associated with the largest area–volume
density, they are essential to quantify the total area–volume ratio of the interfaces.
The observed self-similarity in the scale-local structure at small scales provides the key
ingredient to extrapolate the interfacial area–volume behaviour to higher Reynolds
numbers.
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